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Abstract: A key challenge facing the use of Machine Learning (ML) in organizational selection settings (e.g., the pro-
cessing of loan or job applications) is the potential bias against (racial and gender) minorities. To address this challenge,
a rich literature of Fairness-Aware ML (FAML) algorithms has emerged, attempting to ameliorate biases while main-
taining the predictive accuracy of ML algorithms. Almost all existing FAML algorithms define their optimization goals
according to a selection task, meaning that ML outputs are assumed to be the final selection outcome. In practice, though,
ML outputs are rarely used as-is. In personnel selection, for example, ML often serves a support role to human resource
managers, allowing them to more easily exclude unqualified applicants. This effectively assigns to ML a screening rather
than selection task. It might be tempting to treat selection and screening as two variations of the same task that differ only
quantitatively on the admission rate. This paper, however, reveals a qualitative difference between the two in terms of
fairness. Specifically, we demonstrate through conceptual development and mathematical analysis that mis-categorizing
a screening task as a selection one could not only degrade final selection quality but result in fairness problems such
as selection biases within the minority group. After validating our findings with experimental studies on simulated and
real-world data, we discuss several business and policy implications, highlighting the need for firms and policymakers to

properly categorize the task assigned to ML in assessing and correcting algorithmic biases.
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1 Introduction

The past decade witnessed remarkable advances in the use of Machine Learning (ML) in operational selec-
tion processes such as the processing of loan or job applications (Mithas et al. 2022). In personnel selection,
for example, ML is reportedly used in about one third of all organizations (Gonzalez et al. 2019). A particu-
lar appeal of using ML in these selection settings is the ease of casting the problem as predicting the quality
of a selection outcome, e.g., the future job performance of applicants being selected, based on predictors
such as the biodata and test scores of applicants. Once a firm collects historic data for these predictors and
quality outcomes (e.g., from current/past employees), it runs an ML algorithm over the historic data to train
a prediction model, before using the model in support of future selections.

Yet the use of ML in selection also faces an enormous challenge in terms of fairness across demographic

groups (Sunar and Swaminathan 2022), such as those defined by legally protected characteristics including
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What we submit in our current work, however, is that the two tasks differ qualitatively for the design
of an FAML algorithm. As elaborated in the paper, a root distinction between the two is the cost/benefit
tradeoff for FAML to make risky choices. Consider personnel selection as an example. Suppose that FAML

predicts the quality (e.g., future job performance) of an applicant to follow a bimodal distribution?
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background (e.g., attendance in women’s colleges), which became a proxy for the protected gender variable.



Xu and Zhang: Goal Orientation for Fair Machine Learning
6 Production and Operations Management 00(0), pp. 000-000, © 0000 POMS

we assume the training dataset to be sufficiently large, rendering the choice of technical design unimportant
for conceptual/theoretical development in the paper.

Whereas the FAML literature now includes many algorithms that can satisfy both the ban on dis-
parate treatment and the various types of fairness constraints over disparate impact (Mehrabi et al. 2021),
researchers have also identified many concerns over the existing FAML algorithms, from a decrease of
selection quality (Kleinberg et al. 2017) to the emergence of perverse incentives (Lipton et al. 2018), to
sometimes exacerbating rather than ameliorating the bias in ML predictions (Corbett-Davies et al. 2017).
Lipton et al. (2018), for example, note that these algorithms could create fairness issues within the minor-
ity group, basing their selections not on the predicted quality of a candidate but on whether the candidate
“looks like” a minority according to the predictors.

To address these concerns, there were recent calls for abandoning the ban on disparate treatment (e.g.,
Lipton et al. 2018), instead legalizing an “algorithmic affirmative action” (Bent 2020). Doing so would
allow the ML algorithm to become a “decoupled classifier” (Dwork et al. 2018), which assigns a separate
quota to the minority and majority candidates, before learning separate prediction models for each group,
so as to eliminate any within-group fairness issues. While the legal issues related to affirmative action are
undoubtedly complex (Sackett and Wilk 1994), what we will submit in this paper is that there may be other
ways to address the existing concerns on FAML without changing the law, e.g., by precisely defining the

task assigned to ML in practice as a screening task rather than (over)simplifying it as a selection one.

3 Selection vs. Screening without Fairness Constraint

In this section, we examine the differences between ML for selection and screening without fairness con-
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job performance of the candidate, which cannot be observed but only predicted. With these notations, we
can then summarize the population of candidates as a joint distribution G over the random vector hx; v; yi.

ML Selection Decisions: As discussed in Section 2.1.1, an ML algorithm is prohibited by law from access-
ing the group label (i.e., v) of a candidate. Since access to v is barred whereas y is unobservable, a selection
decision made by ML can depend only on the characteristics x of a candidate. We therefore denote the ML

selection decision
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With this, the ML algorithm design is then reduced to generating an accurate point estimate of g (yjx) for
a given x. To do so, the ML algorithm learns from a training dataset formed by historic instances of hx; v; yi
which are assumed to be drawn from the same joint distribution G. For example, in personnel selection, firms
often train ML algorithms with data from incumbent (i.e., current and past) employees, using their past job
applicants to populate x, their demographic data to fill v, and their performance ratings (e.g., items scanned
per minute for a supermarket checkout clerk, supervisor-rated performance, etc.) as y (Zhang et al. 2023).
Unlike in the case of making predictions and selection decisions for candidates, where the ML algorithm
cannot access v (legally) or y (practically), there is neither legal nor practical limit on what information the
ML algorithm may learn from incumbent employees. Since the purpose of this paper is to examine the goal
orientation for ML algorithms rather than the design of their learning processes, we assume the training
dataset hx;v;yi to be sufficiently large so as to allow ML to learn the joint distribution G to an arbitrary
precision. We will relax this assumption later in experimental studies that use a real-world dataset.

3.2 ML for Screening Task

ML Screening and Manual Interviews: For the screening setting, we follow the exact same notations as
in the selection setting. That is, when making screening decision for a candidate hx;v;yi drawn from joint
distribution G, the ML algorithm only has access to the candidate’s characteristics vector x, and admits the
candidate with probability L(x) 2 [0; 1]. Unlike in the selection setting, the candidates admitted by the ML
iondataset
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distribution is bimodal, representing a high-risk high-reward choice. That is, admitting Bob could lead to a
high reward (in terms of final selection quality) if he happens to be in the right component. Yet the decision
is also risky because of the possibility for Bob to fall under the left, low-quality, component.

Now consider whether either algorithm prefers Alice or Bob in their output. As depicted in Figure 1a,
Alice has a higher expected quality [Eg(yjx) than Bob, meaning that the selection algorithm would prefer
Alice over Bob. In contrast, Figure 1b shows that, if we compare not the expected quality but the conditional
expectation of quality given a positive interview outcome (i.e., Eg(Yjy  VYo;X)), say with yo = 4:5, then
Bob would have a higher expectation than Alice, meaning that the screening algorithm would prefer Bob
over Alice. The root reason for this difference, as depicted in Figure 1b, is that the manual interview de-

risks the selection of Bob. That is, if Bob happens to be in the left (i.e., low-quality) component, he will


Highlight


Xu and Zhang:



Xu and Zhang: Goal Orientation for Fair Machine Learning
Production and Operations Management 00(0), pp. 000-000, © 0000 POMS 13

where T, as defined in Section 3.2, is the binary outcome indicator for the manual interview. Using the
same simplification of low interview cost in Section 3.2 and the same method of Lagrange multiplier as

Equation 12, we can simplify Equation 14 to

z
L =argmax (Eg(y Tjx)+1 Prfv=1;T =1jxg) L(X) ps(X)dx
L ZW
=argmax (Eg(yjT=1;x) PrfT =1jxg+ 1 Prfv=1jT =1;xg PrfT =1jxg) L(X) ps(X)dx
L ZW

=argmax (Ee(yjT=1;x)+1 Prfv=1jT =1;xg) PrfT =1jxg L(X) ps(x)dx
Z L W
sit: PrfT =1jxg L(X) ps(X)dx s; (15)
w

where 1 (I 0) is the Lagrange multiplier. Thus, under the screening setting with fairness constraint, the

optimal choice for FAML is to admit candidates with characteristics x in a decreasing order of
') =Es(yjT=1;x)+ 1 Prfv=1jT =1;xg (16)

until reaching the capacity constraint.

Juxtaposing Equation 16 with the optimal design for the selection case (i.e., Equation 13), the difference
is, in essence, the same as the selection-screening difference without fairness constraint. That is, for screen-
ing, only candidates who can pass the manual interview matters for final selection quality and/or AIR. This
is why Equation 16 includes T = 1 as an additional condition compared with Equation 13. Note that, when
a fairness constraint is present, the optimal outcome of manual interview can no longer be represented by
a threshold cutoff on quality y (like in Equation 4). Instead, the optimal subset of candidates (who passed
FAML screening) could feature different minimum quality for majority and minority candidates thanks to
the fairness constraint. Thus, we now express the interview outcome as T = 1(y + LL,v  ty), where 1() is
again the indicator function, I, captures the varying threshold between groups, and t, is the quality cutoff
for the majority group (i.e., when v = 0). Taking this into Equation 16, we see that an FAML algorithm for

screening would admit candidates in a decreasing order of
') =Es(yjy+ v t;x)+ 1 Priv=1jy+ 1,v t5;Xg 17)
until reaching the capacity constraint.

4.3 Comparison between Selection and Screening

We now examine how the design differences of FAML selection and screening algorithms could lead to
different outcomes when both are used in the same setting — i.e., to retain s, fraction of candidates for man-
ual interviews, which will eventually select s (s s;) fraction of candidates who must satisfy the fairness
constraint of AIR  r. Again, both algorithms have access to the same training dataset and the same infor-

mation (i.e., X) about each candidate. Since the selection algorithm is unaware of the existence of manual
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minorities are often less resourceful in preparing for such tests. To capture such between-group differences,
we construct an applicant pool with equal fraction (i.e., 50%) of majority and minority candidates, and
assign each group with the same quality distribution N(5; 1) but different x-y relationship. Specifically, we

calculate a real-valued x as a noisy proxy of y for each candidate,

Y 1+e |fv:1.(|.e., minority) (18)
y+e; otherwise:

where e N(0;1) is random noise. The resulting joint distribution G is depicted in Figure 2a. Note from
the figure that minorities, on average, score lower on x than their majority counterparts of the same quality.

Before delving into the specifics of Alice and Bob, we first consider a well-recognized fairness issue
associated with FAML selection algorithms which centers around the existence of within-group selection
bias (Lipton et al. 2018, Zhang et al. 2023). Figure 2b depicts how the prediction target of FAML selection
algorithms (i.e., f(x) in Equation 13) varies with a candidate’s characteristics X when the Lagrange mul-
tiplier 1 = 10. The existence of within-group selection bias is evidenced by the non-monotonic nature of
f(x). On the one hand, note from Equation 18 that a larger x always implies a larger (expected value of) y
for either majorities or minorities. On the other hand, the non-mononicity of f(x) in Figure 2b suggests that
an FAML selection algorithm, owing to its design of admitting candidates in a decreasing order of f(x),
could bypass a minority (or majority) candidate with a higher x (and hence a higher expected quality) to
select another minority (or majority) with a lower x (i.e., a lower expected quality). This is the within-group
selection bias recognized in existing work for FAML (Lipton et al. 2018, Zhang et al. 2023).

To explicate the reason behind this bias, and also to illustrate the difference between selection and screen-
ing, we consider how either FAML algorithm chooses between Alice with x = 3 and Bob with x = 6. Alice
clearly has a lower expected quality TE(yjx = 3) = 3:68 than Bob (6:32). Yet, as shown in Figure 2D, the
FAML selection algorithm prefers Alice because her prediction target f(x) = 9:11 is greater than Bob’s
(8:89). Figure 2c further illustrates why. The figure depicts the conditional probability density function of
z=y+ 1 vgiven x for Alice and Bob, respectively. Note that the prediction target for FAML selection
algorithm is f(X) = [E(zjx), meaning that an FAML selection algorithm prefers candidates with a larger
expected value of z. As can be seen from the figure, both Alice and Bob feature a bimodal distribution
of z, with the left and right components corresponding to the case where the candidate is a majority and
minority, respectively. Intuitively, as discussed earlier for Figure 1, the vertical height of the left component
captures the risk associated with selecting a candidate, whereas the horizontal reach of the right component
captures the potential reward from such a selection. From this perspective, it is clear that Bob is a high-risk
high-reward choice because, even though both of its components have larger z than Alice, the risk of falling
into the left component is considerably larger for Bob than for Alice. As a result, Alice has a larger expected

value of z (9.11) than Bob (8.89), leading to her being preferred by the FAML selection algorithm. In other
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words, an FAML selection algorithm might skip a candidate with higher expected quality (i.e., Bob) simply
because another candidate (i.e., Alice) looks more like a minority and is therefore a less risky choice (given
the AIR constraint).

Figure 2d illustrates the case for FAML screening algorithm. As discussed in Section 4.2, for the screen-
ing algorithm, only candidates who can pass manual interview matters for either final selection quality or
AIR. As such, the preference between Alice and Bob is now determined by the expected value of z for

the non-shaded region only. Just like in the case without fairness constraint, this
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5.1 Mathematical Analysis

A fairness constraint is only applicable when the distributions of predictors x or quality y differ between
the majority and minority groups, because otherwise any selection algorithm L(x) would produce the same
selection rate for both groups. Thus, to analyze the outcome of FAML selection algorithm, we start with
defining a measure of between-group difference according to the joint distribution G. Specifically, we are
interested in between-group difference on P(yjx), the conditional distribution of y given x, because FAML
selection algorithm relies on P(yjx) in their decision-making. To capture between-group difference on
P(yjx), we adopt a variation of Cohen’s d (Cohen 2013), the standard statistic used in the US federal court
system to establish a prima facie case of discrimination (Barnett 1982).

DEFINITION 1 (BETWEEN-GROUP DIFFERENCE). The between-group difference in G is defined as

Ec(yjx2Q;v=0) Eg(yjx2Q;v=1)

dg = max
Qw
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shift our focus to cases with between-group difference (i.e., dg = 0), and investigate the selection outcome
when the ML algorithm is assigned with the selection task.
For the first step, we have the following theorem.

THEOREM 1. For any joint distribution G with between-group difference dg = 0, any selection rate s 2
(0; 1), and any given fairness constraint AIR  r (r 2[0; 1]), there must exist a selection algorithm L(x) that
satisfies the selection rate s and fairness constraint AIR  r while having selection quality pse matching the

ideal value ppax. That is,
Z

Pse =max  Eg(yjx) L(X) Pe(X)dX = Prmax; (21)
LiL2L w
where L is the set of all possible selection algorithms that satisfy both capacity constraint s and AIR .

As can be seen from the theorem, when G exhibits no between-group difference, then there would also
be no within-group selection bias when assigning FAML with the selection task because the FAML selec-
tion algorithm can achieve the optimal selection quality pnax. For the second step, we have the following

theorem.

THEOREM 2. For any given probability density function of the predictor vector x, any fairness constraint
AIR  r (r 2[0;1]), any selection rate s 2 (0; 1=2], and any constant d > 0, there must exist a joint distri-
bution G of predictor vector x, group label v, and quality y, such that the between-group difference d;  d,

and
pse  (@sr+1+r)> 2sr(1+r)d?) r (1+r 2s)+(2sr+1+r)% 22)
Prnax @+r 25)r(A+r)2d2+ (1 +r)2(2sr+1+r)?2 '
When s ¥ 0, the limit of this ratio satisfies
+
lim PsE r+1 23)

ST0 Prax rd2+r+1:

Consistent with our earlier conceptual development, Theorem 2 shows that, when between-group differ-
ence is present, assigning ML with the selection task necessitates a deviation from quality-based selection
and results in a substantial loss of selection quality. For example, even when the between-group bias is quite
small, e.g.,d; 0:5, to achieve AIR  0:8, we have pse=pmax  (0:8+1)=(0:8 0:25+0:8+1) =0:9 when
s ¥ 0, suggesting a loss of at least 10% on selection quality. When the between-group difference is larger,
e.g., ds =1, there is pse=pmax  0:69 when s ¥ 0, indicating a loss of over 30% for selection quality. Fur-
ther, the theorem also shows that the upper bound on pse=pmax decreases with a larger” r, indicating that the
problem with the selection task becomes more severe when the fairness constraint is more stringent. These
results confirm our earlier observations that, with the presence of between-group difference, assigning ML
with the selection task could lead to a departure from quality-based selection, resulting in within-group
selection bias and, consequently, a substantial decrease in final selection quality. This demonstrates the

importance of building manual examination (e.g., interviews) into selection processes in practice.

7 Note that the partial derivative of lims s o Pse=Pmax With respectto ris d?=(rd>+r+1)2 0.
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5.2 Simulation Study

In this subsection, we present a simulation study that compares the outcomes of 1) directly using an FAML
algorithm for selection; and 2) using an FAML algorithm for screening followed by manual interviews. We

describe the dataset, the design of the simulation study, and the results, respectively.

5.2.1 Dataset

While our findings apply to a wide variety of selection settings, from college admissions to loan appli-
cations, among them personnel selection is a setting that has received the most empirical attention in the
literature (SIOP 2018). We thus designed our simulation study by following the prevailing practice in per-
sonnel selection (Finch et al. 2009), which is to construct a dataset according to the empirical evidence
reported in meta-analysis (Bobko et al. 1999) pertaining to the 1) the correlation between predictor vari-
ables and the quality indicator, 2) the inter-correlation among predictor variables, and 3) the between-group

difference on each predictor.

Table 1  Standardized Mean Group Differences and Correlation Matrix

Variable 1 2 3 4 5 6 d

1. Biodata 0.33
2. Cognitive ability 19 1.00
3. Conscientiousness .51 .00 0.09
4. Integrity 25 .00 .39 0.00
5. Structured interview | .16 .24 .12 .00 0.23
6. Job performance (y) | .28 .30 .18 .25 .30 0.45

Note. Variables 1-4 = x, predictors available to ML. Variable 5
= predictor administered manually post-screening (if applicable).
Variable 6 = quality indicator y. d = standardized mean group dif-
ference between Black and White applicants.
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5.2.2 Design
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Table 2 Mean Quality of Selected Candidates When AIR = .3, .6, .9

P1
AIR

s=:10

s=:20

Selection
(s1=s=1)

Screening
(s1=s=2)

Screening
(s1=s=3)

Selection
(s1=s=1)

Screening
(s1=s=2)

Screening
(51=s=3)

ID ML d;

ID ML d; d,

ID ML d; d;

ID ML d;

ID ML d; d;

ID ML d; d;

2,3
2,6
2,9
4,3
4,.6
4,9
.6,.3
.6,.6

.6,.9

0.71 0.68 .04
(.02)(.02) (.01)
0.69 0.59 .15
(.02)(.02) (.01)
0.67 0.49 .28
(.02)(.02) (.01)
0.67 0.62 .07
(.02) (.02) (.01)
0.64 0.49 .23
(.02) (.02) (.02)
0.610.36 .41
(.02) (.02) (.03)
0.59 0.55 .08
(.02) (.02) (.01)
0.550.41 .26
(.02) (.02) (.02)
0.510.27 .46
(.02) (.02) (.03)

0.780.77 .00 .01
(.02) (.02) (.00) (.00)
0.76 0.73 .00 .05
(.03) (.03) (.00) (.01)
0.730.68 .00 .08
(.03) (.03) (.00) (.01)
0.740.74 .00 .00
(.02) (.02) (.00) (.00)
0.710.67 .00 .05
(.02) (.02) (.00) (.01)
0.670.60 .00 .09
(.02) (.03) (.02) (.02)
0.66 0.66 .00 .00
(.02) (.02) (.00) (.00)
0.61057 .00 .06
(.02) (.02) (.00) (.01)
057 0.48 .07 .16
(.02) (.03) (.03) (.03)

0.790.79 .00 .00
(:02) (.02) (.00) (.00)
0.770.77 .00 .01
(:02) (.03)(.00) (.01)
0.750.72 .00 .03
(:03) (:03)(.00) (:01)
0.740.74 .00 .00
(:02) (.02) (.00) (.00)
0.710.71 .00 .01
(:02) (.02) (.00) (.01)
0.67 0.65 .00 .04
(:02) (.03)(.00) (:02)
0.66 0.66 .00 .00
(:02) (.02) (.00) (.00)
0.620.61 .00 .01
(:02) (.02) (.00) (.01)
057052 .00 .08
(:02) (.03) (.00) (.02)

057 0.55 .03
(.08) (.08) (.00)
0.550.47 .15
(.08) (.06) (.01)
0.53 0.38 .29
(.08) (.06) (.02)
0.51 0.48 .06
(.08) (.08) (.00)
0.49 0.39 .21
(.08) (.06) (.02)
0.45 0.26 .42
(.08) (.06) (.03)
0.43 0.39 .08
(.08) (.08) (.01)
0.39 0.30 .22
(.08) (.06) (.03)
0.350.17 .50
(.08) (.05) (.05)

0.630.63 .00 .00
(:08) (.08) (.00) (.00)
0.610.60 .00 .01
(:08) (.08)(.00) (.01)
0.59 0.57 .00 .03
(:08) (.08)(.00) (:01)
0.56 0.56 .00 .00
(:08) (.08) (.00) (.00)
054053 .00 .01
(:08) (.07) (.00) (:01)
050 0.48 .00 .05
(:08) (.07) (.01) (:02)
0.48 0.48 .00 .00
(:08) (.08) (.00) (.00)
0.440.44 .00 .00
(:08) (.07) (.00) (.02)
0.40 0.37 .00 .09
(:08) (.06) (.03) (.03)

0.630.63 .00 .00
(.09) (.09) (.00) (.00)
0.610.61 .00 .00
(.08) (.08) (.00) (.01)
0.59 0.59 .00 .00
(.08) (.08) (.00) (.01)
0.56 0.56 .00 .00
(.09) (.09) (.00) (.00)
0.54 054 .00 .00
(.08) (.08) (.00) (.01)
051050 .00 .01
(.08) (.07) (.00) (.02)
0.48 0.48 .00 .00
(.09) (.09) (.00) (.00)
0.450.45 .00 .00
(.08) (.08) (.00) (.01)
0.410.40 .00 .02
(.08) (.07) (.00) (.03)

avg

0.63 0.50 .22

0.69 0.66 .01 .06

0.70 0.69 .00 .02

0.47 0.38 .22

0.530.52 .00 .02

0.53 0.53 .00 .00

Note.
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5.3.2 Design of ML Algorithms

To ensure a fair comparison, for each dataset, we used the exact same ML algorithm for selection and
screening, with the only exception being their respective prediction targets as defined in Equations 13 and
16, respectively. For the simulation dataset, since the variables were generated as a mixture of multivari-
ate Gaussian distributions, the natural choice for ML algorithm is the iterative Expectation-Maximization
(EM) algorithm for learning a Gaussian mixture model (McLachlan et al. 2019). For the real-world dataset,
the high dimensionality of x (i.e., 120 variables) could easily lead to curse-of-dimensionality problems for
many ML algorithms (Bengio and Bengio 2000), e.g., support vector machines, Gaussian processes, etc. To
address the challenge, we used a multilayer perceptron (MLP; Goodfellow et al. 2016) — i.e., a feed-forward,
fully connected neural network — which is known to excel at handling high-dimensional data (Poggio et al.
2017). It is important to note, however, that our choice of using MLP in this context is for demonstration
purposes only, and should not be interpreted as a suggestion of its superiority over other alternative algo-
rithms (e.g., regularized regression). Specifically, we trained a simple MLP with three layers, a hidden layer
size of 10, and the Rectified Linear Unit (ReLU) activation function following each layer except the last
(Goodfellow et al. 2016). Given the vast scale difference of different predictors, we followed the common
standardization procedure (i.e., using z-score) for each variable before feeding data into the MLP. The train-
ing of MLP was done using the limited memory Broyden—Fletcher-Goldfarb—Shanno algorithm (BFGS)

algorithm (Nocedal and Wright 2006) to minimize the mean squared error of predictions.

5.3.3 Results

For both datasets, we tested the selection and screening algorithms with a final selection rate of s = 0:1
and a fairness constraint of AIR 1. Both algorithms were used to retain s, (s; > s) fraction of candidates,
who are then further selected through manual interviews that are implemented in the exact same way for
both algorithms. Specifically, to ensure that any degradation of selection quality can be attributed to the ML
algorithms rather than the manual interviews, we set the interviews to generate the optimal outcome for
both algorithms — i.e., to select the subset of retained candidates with the highest expected quality, subject
to capacity (i.e., s) and fairness (i.e., AIR 1) constraints.

With this setup, there is clearly a tradeoff between s; and the final selection quality y (i.e., the average
quality of all s selected candidates) for both algorithms, because either algorithm could achieve the same,
best possible, selection quality when s; = 1. We denote such best possible quality as Y. To assess the
tradeoff achieved by the two algorithms, we varied the retention rate s, from 0.15 to 0.30 (with a step of
0.01), and then compared the minimum retention rate s; required by either algorithm to reach a certain
fraction (e.g., 80%) of the best possible quality ymax. Clearly, this comparison would directly reveal the

saving of interview cost should we replace one algorithm with the other.



24

Xu and Zhang: Goal Orientation for Fair Machine Learning
Production and Operations Management 00(0), pp. 000-000, © 0000 POMS






Highlight


Xu and Zhang: Goal Orientation for Fair Machine Learning
26 Production and Operations Management 00(0), pp. 000-000, © 0000 POMS

research may examine how such data- and algorithm-quality issues could affect the outcomes of FAML
algorithms in selection and screening settings.

We also offer the caveat that the current work was situated in the legal context in the US. We did not
consider the egalitarian ideals of fairness, despite its popularity in FAML research as the basis of fairness
definitions (Mitchell et al. 2018). We also did not consider the perception of fairness, such as whether
the use of algorithms for selection could undermine individual’s beliefs about procedural justice (New-
man et al. 2020). While the selection-screening distinction studied in the paper is a fundamental issue that
transcends national boundaries, the specific legal environment could differ drastically from one country to
another (Sanchez-Monedero et al. 2020). Thus, our results may be less applicable to nations where anti-
discrimination laws do not stipulate limits on disparate impact, hence rendering the enforcement of fairness
constraints less relevant (Mahlmann 2015, Murphy 2018).

Finally, we focused on AIR as the fairness measure in this paper because of its widespread use in the US
legal system. In the FAML literature, many other measures have been studied (Mitchell et al. 2018). They
range from statistical parity (between groups) on selection rates (Zemel et al. 2013, Agarwal et al. 2018)
to statistical parity on predictive accuracy (Feldman et al. 2015, Donini et al. 2018), from a constraint on
mapping similar predictors to similar outcomes (e.g., Lipschitz constraint; Dwork et al. 2012; no preferential
treatment; Joseph et al. 2016) to an assurance that no protected group under one selection system would
overwhelmingly prefer another system (i.e., “envy-freeness”; Zafar et al. 2019, Ustun et al. 2019), from
a measure specified through causal or counterfactual inference (Datta et al. 2017, Kilbertus et al. 2017,
Kusner et al. 2017, Nabi and Shpitser 2018, Zhang and Bareinboim 2018) to a combination of multiple
constraints (Hardt et al. 2016). These constraints are so diverse that, as noted repeatedly in the FAML
literature (Kleinberg et al. 2017, Chouldechova 2017, Pleiss et al. 2017), many of them are inherently
conflicted even without considering selection quality. Future research may examine how the use of other

fairness constraints may affect the difference between selection and screening tasks for FAML algorithms.
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Supplemental Materials

EC.1 Proof of Theorem 1

THEOREM 1. For any joint distribution G with between-group difference dg = 0, any selection rate s 2 (0; 1),
and any given fairness constraint AIR  r (r 2 [0; 1]), there must exist a selection algorithm L that satisfies
the selection rate s and fairness constraint AIR  r while having selection quality pse matching the ideal

value pmax. That is,
z
Pse=max  Ec(yix) L) Pe(x)dX = Prax; (EC.D)
L2L w

where L(x) is the probability for L to select a candidate with predictor vector x, and £ is the set of all

possible selection algorithms that satisfy both capacity constraint s and AIR .

Proof. The proof is structured as follows. We start by considering the optimal algorithm T that makes use
of the group label v (v 2 0; 1g) of each candidate to achieve the ideal selection quality pma. Note that the
existence of T is evident from the definition of pn. in Equation 20. Since T has access to the group label,
we use T (x; V) to denote® the probability for T to select a candidate with predictor vector x and group label
v. Then, we construct a selection algorithm L, which does not use v in its input, based on T and prove that
L matches T in terms of selection rate, selection quality, and AIR.

Our construction of L is quite simple. For any given candidate with predictor vector x 2 W, we set L to
select the candidate with probability

LO) =T(x;1); (EC.2)

where T (x; 1) is the selection probability, according to T, for a candidate with predictor vector x and group
label v =1 (i.e., minority).

We prove by contradiction that L matches T in terms of selection rate, selection quality, and AIR. Suppose
they do not match. Then there must exist x 2 W such that T (x;0) & T (x; 1), because otherwise L and T
would be equivalent for all candidates (i.e., 8x 2 W, L(X) =T (x;0) = T(x; 1)).

Given the existence of x with T (x; 0) & T (x; 1), one of following two possibilities must be true: 1) there
exists at least one predictor vector X, 2 W such that T (Xo; 0) > T (Xo; 1); and 2) there is T(x;0) T (x; 1) for

all x 2 W, with the inequality (i.e., <) holding for at least some x. We consider the two cases respectively in



ec2

Case 1: For the first case, we prove contradiction by first constructing an alternative algorithm T' that
also makes use of group label v but is different from T, and then proving that T cannot be optimal (i.e.,
contradiction) because T' dominates it in terms of the tradeoff between selection quality and AIR.

Specifically, recall that, in this first case, there exists xo 2 W such that T(Xo;0) = T(Xo;1). We set
T'(x;v) =T (x;V) for all x 2 Wnfx,g and v 2 f0; 1g. For x = X,, we set

T'(X0;1) =T (X0;0) Prfv=0jx,g+ T (Xo;1) Prfv=1jx,g (EC.3)
> T (%;1); and (EC.4)
T'(X0;0) =T (X0;0) Prfv=0jx,g+ T (Xo;1) Prfv=1jx.g (EC.5)
<T(Xo;0): (EC.6)

The inequalities in (EC.4) and (EC.6) hold because T (Xo;0) > T (Xo;1). A key observation from the con-

struction of TY is that

T(x;0) Prfv=0= 0= 0==0=
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meaning that T yields a selection outcome with AIR > 1, contradicting our assumption of AIR 2 [0; 1].

Step 2: As Step 1 proves the existence of D, the objective of Step 2 is to prove that there must exist a pair
of predictor vectors X, and X}, one inside and the other outside D, with different expected quality. In other

words, there must exist X, 2 D and x}, 2 WnD, such that
Eg(yjXo) 6 Ee(yixo): (EC.12)

The reason here is straightforward. If no such pair exists, then all x (x 2 W) must share the same expected
quality according to G. Given d; = 0, any selection outcome would then yield the exact same selection

quality, directly proving the theorem?.

Step 3: As Step 2 proves the existence of X, 2 D and x}, 2 WnD with Eg(yjX,) & Eg(yjx5), we are now ready

to complete the proof for Case 2. Consider the between-group difference for
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where the inequality in (EC.20) is due to (EC.8) and X, 2 D, and the inequality in (EC.21) is due to x} & D.
Taking the result here (i.e., Prfx = xojx 2 fXg; x5g; v =0g Prfx = xojx 2 fxo; x}g; v =1g > 0) and (EC.12)
into (EC.16), we have

Eo(yjx 2 fXo; Xhg;v=0) Eg(yjx 2 fxo;x}g;v=1) & 0; (EC.24)

which contradicts! the assumption that dg = 0. This completes the proof for both cases.

11 To see this, simply take Q = fx; x}g in Definition 1.
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EC.2 Proof of Theorem 2

THEOREM 2 For any given probability density function of the predictor vector x, any fairness constraint AIR
r (r 2 [0; 1]), any selection rate s 2 (0; 1=2], and any constant d > 0, there must exist a joint distribution

G of predictor vector x, group label v, and quality y, such that the between-group difference dg  d, and
pse  ((@sr+1+r)®> 2sr(1+r)d?) r (L+r 2s)+(2sr+1+r)®
Prmax (Q+r 29r(1+r)’d?+ (A +r)?(2sr+1+r)? '
When s ¥ 0, the limit of this ratio satisfies

(EC.25)

. SE r+
lim P

si0 pmax
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Upper bound on dg: Recall from Definition 1 that, to prove d;  d, we need to prove

Es(yjx2Q;v=0) Eg(yjx2Q;v=1)
SDe(yix2Q)

d (EC.42)

for all possible Q  W. Note from our construction of ;; that for all x 2 W, there is IEg(yjx; v = 0) = . This
reduces (EC.42) to

Ho Ee(yjx2Q;v=1)

SRR d: (EC.43)

Further, note that for all x @ Wy, there is Eg(yjx;v = 1) = . Thus, we only need to consider Q@ W; when
proving (EC.42). Since both the conditional distribution of v given x and the conditional distribution of y

given x; v stay constant for all x 2 W;, we only need to prove

L Ee(yjx2Wy,v=1)

- d: EC.44
SDg(yjx 2 Wy) ( )
As Eg(yjx 2 Wy; v =1) =y, = 1, our objective now is to prove
1
i EC.45
SDe(yjx 2 W1) ( )

To calculate SDg(yjx 2 W;), note that the conditional distribution of y given x 2 W, follows Bernoulli

distribution with mean

W = Prfv = OJX 2 W]_g M0 + Prfv= 1JX 2 ng 11 (EC46)
1+r 2sr
= + .
2sr+1+r H 2sr+1+r (EC.47)
2sr +u(l+r)
= EC.48
2sr+1+r ( )

By taking the definition of p in (EC.41) into (EC.48), we have

© (2sr+1+1r)? 2sr(1+r)d? 1
Sr+1+r Ssr(1+r
2sr . 2sr + (1+r)2d2+(2sr+1+1)? 1+ r)A

" | EC.49
Ha 2sr+1+r osr+1+r ( )
o 2sr 2sr (1+r)(2sr+1+r)? 2sr(1+1)2d?
= max @ ; A2 G A EC.50
2sr+1+r oor +1+r ( )
© 1
o5 et
=max@ L W@ A EC.51
2sr+1+r1"  2sr+1+r ( )
2sr 2sr +1+r)?2

2sr+ 141" (1+7r)2d2+ (2sr +1+r)2
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We are now ready to prove (EC.45). Specifically, we calculate its left-hand side as

1 p 1y
- =P (EC.53)
SDg(yjx 2 W1) le 1 W)
. (EC.54)
b1 ST
@ p(a+r)
M orer
s T
= 1715 (EC.56)
M somaer
1 u _
(2sr+1+r)2 1+r ' (EC.57)

(A+1)2d2+(2sr+1+1)2  2sr+1+r
where (EC.54) is derived by replacing the second appearance of |1; with the expression in (EC.48); (EC.56)
is derived by dividing both the numerator and the denominator by pﬁ; and the inequality in (EC.57) is
derived by replacing ; with the second term in (EC.52).

2sr+1+1)2  2sr(1+r)d?

Recall from (EC.41) that u takes the maximum value of 0 or ((1+r)2 PG+ 11)

. If p =0, there must be
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This completes the proof of (EC.45) and, inturn, dg  d.

Upper bound on pse=pmex: First, consider the ideal algorithm with access to v, which has an expected
selection quality of pma. Note that, with our construction of G, the ideal algorithm could simply choose all

minority candidates with x 2 W, and v =1. Since

Prfx2Wy;v=1g=Prfv=1jx 2 W;g Prfx2 W,g (EC.66)
2sr 1 sr

Tasr+ier 21+t (EC.87)
+1+

_ 235;1 — 25;(1 j 5 d (EC.68)

=Tar (EC.69)

selecting all minority candidates with x 2 W, exactly reaches AIR =r. We therefore have

1

Pmax = Ha1 T+r +H T+r (EC.70)
+r

= % (EC.71)

Next, consider a selection algorithm without access to v. Let po be the fraction of candidates selected by
the algorithm that have x 2 W,. Since the algorithm has no access to v, the fraction of selected candidates

who are majorities is

So=po Priv=0jx2Weg+ (1 po) Prfv=0jx2W.g (EC.72)
—(1 p) 1. (EC.73)
-G P gy '

while the fraction of minorities is

S;=py Priv=1jx2Wog+ (1 po) Prfv=1jx 2W,g (EC.74)
2sr

_— EC.75
2sr+1+r ( )

=po+(@ po)
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Recall that the expected quality of candidates with x 2 Wy and x 2 W, is g and py, respectively, with

I M. This leads to the following upper bound on psg:

r+r? 2sr r+r? 2sr

Pse Uw'ﬂll Ta+re
_or+r? 2sr  2sr+p(l+r) r+rz 2sr
—H (1+r)? 2sr+1+r (1+r)?
_r+r? 25r+25r+p(1+r) 1+r+2sr
N Ty 2sr+1+r  (1+r)2
_r+r? 25r+25r+u(1+r)
M Ty L+ 1)
_HA+Tr+2sr(1 )
B (1+r)?

Putting together pse and ppax, We have

Pse M (r+r? 2sr)+2sr+p(l+r) .
Prmax Q+0r+@Q+ru '

Since s 2 (0;1=2], there isr +r2 2sr r?

(EC.79)
(EC.80)
(EC.81)
(EC.82)

(EC.83)

(EC.84)



